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AIRFOIL PROFILES FOR M INIMUM PRESSURE DRAG AT SUPERSONIC VELOCITIES-GENERAL 
ANALYSIS W ITH APPLICATION TO LINEARlZED SUPERSONIC FLOW 1 

By DEAN R. CHAPMAN 

SUMMARY 

A theoretical inuestigation is made of the air:foil projile for 
minimum pressure drag at zero lift in supersonic$ow. In the 

Jirst part of the report a  ge,neral method is developed *for calcu- 
lating the pro$le having the least pressure drag for a  given 
auxiliary condit ion, such as a  given structural requirement or a  
given thickness ratio. The various structural requireme& con- 
sidered include bendiny sttength, bend&g stitfness, totsional 
strength, and  torsional stijfness. No assumption is made 
regarding the trail ing-edge thickness; the opt imum value is 
determined in the calculations as a  function of the base pressure. 

To illustrate the general  method, the opt imum airfoil, de$ned 
as the airfoil having minimum pressure drag for a  given auxil- 
iary condit ion, is calculated in a  second part of the report using 
the equat ions of l inearized supersonic$ow. It is found that the 
opt imum ai?:foil in most cases has a  blunt trailing edge.  It also 
is-found that the opt imum thickness distribution depends only on  
one  dimensionless parameter,  termed the “base pressure param- 
eter”. This parameter involves the Mach number,  airfoil 
thickness ratio, and  base pressure coe$icient. The <fleet of 
variations in each of these latter three guantit ies on  the shape of 
the optimum proJile is discussed, and  a  simple criterion formu- 
lated for determining the condit ion under  which the opt imum 
trail ing-edge thickness is greater than zero. The calculated 
pressure drag of the opt imum projile is compared to that of a  
biconvex sharp-trai l ing-edge pro$le satisfying the same struc- 
tural requirement. The reduct ion in pressure drag depends on  
the base pressure parameter and  varies.from a  few percent to as 
much as 75  percent.  

INTRODUCTION 

sharp-trailing-edge airfoil. This particular auxiliary condi- 
tion, however, does not represent practical cases where an 
airfoil must satisfy a certain structural requirement, such as 
a given area moment of inertia, or a given section modulus. 
Drougge (reference 1) has made a more elaborate theoretical 
analysis to determine the optimum profile for the auxiliary 
condition of a given bending stiffness of the airfoil, and also 
for the condition of a given torsional stiflncss. Drougge used 
linearized airfoil theory and considered only sharp-trailing- 
edge airfoils. His results are somewhat limited in two 
respects: They do not cover cases outside the scope of linear- 
ized airfoil theory, and, though they include the auxiliary 
conditions of given bending and torsional stiffness, they do 
not include the auxiliary condition of a given bending strength 
(given section modulus). A far more important limitation 
of this analysis, though, is the tacit assumption that the 
optimum airfoi1 will have a sharp trailing edge. 

In supersonic flow the finite thickness of an airfoil invari- 
ably introduces a certain amount of pressure drag which can 
be minimized by a rational choice of airfoil shape. The 
profile for minimum pressure drag depends, among other 
things, on the particular auxiliary condition that is imposed 
on the airfoil geometry. For example, if it is required that 
the optimum profile (defined herein as the profile of least 
pressure drag for a given auxiliary condition) satisfy the 
auxiliary condition of a given thickness ratio, then according 
to a well-known result of Ackeret’s linearized airfoil theory, 
the so-called double-wedge profile represents the optimum 

Thcrc is a small amount of cxpcrimcntal evidence in t.he 
measurements of Ferri (rcfcrcnce 2) on airfoils with sharp 
trailing cdgcs which suggests that the optimum airfoil might, 
in fact, have a moderately thick trailing edge. The meas- 
ured profile drag of one airfoil tested by Ferri (G. U. 3 airfoil 
at a  Mach number of 1.85) was considerably lower than 
inviscid theory would indicate. Allowance for skin friction 
would cause this discrepancy to become even greater. 
Schlieren photographs and pressure-distribution measure- 
ments showed that viscous effects effectively thickened the 
airfoil shape near the trailing edge. From these results it 
can be inferrecl that at moderate supersonic velocities it is 
possible for an airfoil with a thickened trailing edge-that is, 
a  blunt-trailing-edge airfoil-to have lower drag than a 
corresponding sharp-trailing-edge airfoil. Employing a 
different approach, this inference has been obtained from 
quantitative considerations in reference 3, where a reasonable 
estimate of the base pressure was made and the drag calcu- 
lated 8s a function of trailing-edge thickness. Such calculn- 
tions, though very approximate, have indicated that in cer- 
tain cases a moderate increase in trailing-edge thickness will 
decrease the over-all pressure drag. 

Apart from the reasons just cited for expecting that the 
optimum supersonic airfoil might have a thick trailing edge, 
there are other independent considerations which suggest 

1 Supersedes NACA TN 2264, “Airfoil Profiles for hf inimum Pressure Drag at Supersonic Velocit ies-General Analysis With Application to Linearized Supersonic FLOW,” by Dean R. 
Chapman,  1951. Vnriow examples of Opt imum proffles given in TN 2264 have been supplemented and revised for the present report iu sccordance with CXPeri~eLItal meWWm?ntS  of bse 
pressure publ ished subsequent to TN 2264. 

1  
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the same result. By analyzing conditions at infinite Mach 
number, Saenger pointed out in 1933 that even with a vacuum 
at the base the optimum airfoil for a given thickness ratio 
would, in this extreme case, have a trailing-edge thickness 
equal to the maximum airfoil thickness. (See reference 4.) 
In reference 5, Ivey obtained a similar result by calculating 
the pressure drag at a Mach number of 8 for a family of 
airfoils having va.rious positions of maximum thickness. 
More recently, Smelt (reference 6) has developed an approx- 
imate condition determining when an airfoil with maximum 
thickness at the trailing edge has lower drag in hypersonic 
flow than an airfoil with a sharp trailing edge. Saenger, 
Ivey, and Smelt, however, did not consider airfoils having a 
trailing-edge thickness less than the maximum airfoil thick- 
ness, and hence their results do not determine the optimum 
profile for hypersonic velocities. Nevertheless, it is evident, 
that at high supersonic Mach numbers the optimum profile 
has a relatively thick trailing edge. On this basis it is not 
unreasonable to expect that at lower supersonic Mach num- 
bers the optimum profile would have some thickness at the 
trailing edge. 

The physical reason why it is possible for a blunt-trailing- 
edge airfoil in supersonic flow to have a lower pressure drag 
than a corresponding sharp-trailing-edge airfoil is quite 
simple, as can be illustrated by the t,wo profiles shown in 
figure 1. These profiles have the same area, which corre- 
sponds to the same torsional stiffness of a thin-skin structure 

r - - Sharp- broiling-edge oit .foif 

: 
! I r - -Bun f- h-oiling-edge airfoil 

* I 

FIGURE I.-Sketch comparing a typical sharp-trailing-edge airfoil and a blunt-trailing-edge 
airfoil of equal area (equal torsional stitiess for a thin-skin structure). 

The blunt-trailing-edge airfoil has a slightly smaller thick- 
ness ratio and a position of maximum thickness which is 
farther rearward, hence the leading-edge angle is smaller 
and the pressure drag of the surface forward of the trailing 
edge is less than that of the sharp-trailing-edge airfoil A 
certain amount of base drag, however, obviously is added by 
employing a thick trailing edge. If the added base drag is 
less than the reduction in pressure foredrag, then the net 
result is a smaller total pressure drag for the blunt-trailing- 
edge airfoil. This invariably is the case at extremely high 
supersonic Mach numbers where the base drag is negligible 
compared to the pressure foredrag. At low supersonic 
Mach numbers, though, the base drag can be many times 
the pressure foredrag, and the optimum trailing-edge thick- 
ness must be expected a priori to depend to a great extent 
on the base pressure. 

The present theoretical analysis was initiated in view of 
the foregoing considerations. The primary purpose of the 
investigation is to develop a method of determining the 
supersonic airfoil profile for minimum pressure drag at zero 
lift, without making an arbitrary assumption about the trail- 

ing-edge thickness. The profile so determined, which is 
termed an optimum profile, is considered to depend on the 
base pressure, Mach number, and the particular auxiliary 
condition imposed on the airfoil. A secondary purpose of 
the investigation is to develop a method of sufficient gener- 
ality to enable second-order and shock expansion theories 
to be used in calculating optimum profiles. Such generality 
is desirable in order to obtain results that are valid at hyper- 
sonic Mach numbers. 

NOTATION 

B base pressure parameter for linearized supersonic flow 
7 73 

1 z? limiting value of the base pressure parameter below 
which the optimum airfoil has a blunt trailing edge 

c airfoil chord 
Cd section pressure drag coefficient 
f symbol for the function Py’ 
F(k, q>) incomplete elliptic integral of the first kind of modu- 

h 
H 

I 

k, 
1 
L 

lus k-and amplitude (p 
trailing-edge thickness 
dimensionless trailing-edge thickness (h/t) 

M 
n 

P 

P 

t 
v 
X 
x 
Y 
Y 

P 
x 
u 

P 

0 
1 

brn 

given value of the auxiliary integral [:~c&d~] 
constant defined by equation (20) 
length of chord over which airfoil thickness is constant 
dimensionless length of chord over which airfoil thick- 

ness is constant (Z/s) 
Mach number 
arbitrary parameter appearing in the definition of the 

auxiliary integral I 
(For the examples considered ~2, is taken as I, 2, 3 or 

static pressure on airfoil surface 

pr ess,I coefhcient [(,-,-)/(a p, vaz)] 

base pressure coefficient [(P~-~J/($ pm V-Z)] 

Reynolds number based on airfoil chord 
distance from leading edge to first downstream posi- 

tion of maximum thickness 
maximum thickness of airfoil 
velocity 
distance from leading edge 
dimensionless distance from leading edge (r/s) 
ordinate of upper half of airfoil 
dimensionless ordinate [y/(t/2)] 
JMm2- 1 
Langrangian multiplier (arbitrary constant) 
arbitrary parameter appearing in the definition of the 

auxiliary integral I 
(For the examples considered u is taken as 0 or 1.) 

mass density 
SUBSCRIPTS 

airfoil surface at leading edge 
airfoil surface at trailing edge 
free stream 
base 
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circular-arc biconvex airfoil with sharp trailing edge h which minimizes this expression for a given auxiliary 
double-wedge airfoil with sharp trailing edge condition. 

V vacuum at base 
SUPERSCRIPT 

I differentiation with respect to x 

THEORETICAL ANALYSIS 
ASSUMPTIONS AND STATEMENT OF PROBLEM 

In the analysis which follows several simplifying assump- 
tions are made. Two-dimensional airfoils in a purely super- 
sonic flow at zero lift only are considered. It is assumed that 
the pressure at any point on the airfoil surface forward of the 
trailing edge can be calculated from the flow of an inviscid, 
nonconducting gas. It is further assumed that the leading 
edge is sharp. No analogous assumption is made regarding 
the trailing-edge thickness, but it is assumed that the base 
pressure coefficient Pa is known. This enables the optimum 
trailing-edge thickness to be calculated as a function of PO; 
hence, experimental data on base pressure in two-dimensional 
flow are required in order to apply the theoretical results of 
the analysis to a given case. 

Before expressing the various auxiliary conditions in ana- 
lytical form, it should be noted that the surface pressure co- 
efficient P is regarded as a known function of the variable y’ 
and the two parameters y’,, (surface slope at leading edge) 
and M,. The actual functional form of P(y’, y’o,M,) will 
depend on whether linearized, second-order, hypersonic, or 
shock-expansion theory is employed in calculating surface 
pressures. For example, if linear theory were employed, the 
explicit expression P=2y’/ Jm would be used; but, 
if shock-expansion theory were employed, a more complex 
implicit expression involving y’,, as well as y’ and M, would 
have to be used. In order to allow various theories to be 
employed, the particular functional form of P(y’, y’,, M,) 
will at present be unspecified. The equations which result 
can be applied to any of the various theories by substituting 
the appropriate function for P. 

From the fact that the surface pressures on the top and 
bottom of an airfoil can be calculated independently in a 
supersonic flow, it follows that at zero lift the optimum 
profile will be symmetrical about the chord plane. Conse- 
quently, reference is made throughout to the thickness distri- 
bution of only the upper surface of an optimum profile. 

In comparing the pressure drag of various profiles, the 
chord length is held constant, and the thickness distribution 
along the chord is varied in a manner which is arbitrary 
except for the requirement of satisfying the particular 
auxiliary condition being considered. The various auxiliary 
conditions investigated are: a given torsional stiffness of the 
airfoil section, a given torsional strength, a given bending 
stiffness, a given bending strength, and a given thickness 
ratio. For each of the structural conditions the case of a 
thin-skin structure and a solid-section structure is considered 
since the optimum airfoil profile may be expected to depend 
somewhat on the type of structure. Attention is focused on 
the fact that the basic idea employed in the analysis involves 
the minimizing of pressure drag for a given structural require- 
ment; the results obtained with this method of approach are 
the same as would be obtained if the structural characteristic 
were maximized for a given value of the drag.2 

Turning now to the consideration of auxiliary conditions, 
it is clear that some integral expression will be involved, 
since the function y(x) is not known beforehand. If, for ex- 
ample, the airfoil is a solid-section structure and the moment 
of inertia is prescribed, then the particular auxiliary condi- 
tion which y(x) must satisfy in addition to minimizing cd is 

that the integral Ocy3dx be constant. S A different auxiliary 

condition would, of course, be represented by a different 
integral. In the present investigation a somewhat general- 
ized auxiliary condition is used which is represented by the 
single integral 

1 
I’; 0 (t/2)” S ‘7J” dx=constant (2) 

where n and u are constants. Thus the example just cited 
is a special case of the above integral with n=3 and a=O. 
TO illustrate further, the auxiliary condition of a given section 
modulus of a solid-section airfoil is represented by the special 
case n=3 and a=l. The corresponding solution for y(x) 
in this latter case would provide the profile of least pressure 
drag for a given bending strength. 

Some of the different structural criteria to which the gen- 
eral integral (2) corresponds are summarized in the following 
table : 3 

MATHEMATICAL FORMULATION OF PROBLEM c 

I 

Structural criteria 
- 

The pressure drag cd of an airfoil with a thick trailing edge 
is the sum of the base drag and the pressure drag of the sur- 
face forward of the trailing edge. Letting P be the surface 
pressure coefficient, y(x) the function defining the surface, 
and PO the base pressure coefficient, then cd may be expressed 
as 

Qiven torsional stiEms3. or torsional strength, or volume of thin- 
skin structure 

Given bending stiffness of thin-skin structure 
ffiven bending stiffness or given torsional stiffness of solid-section 

structlm? l 

Given bending strength of thin-skin structure 
Given bending strength of solid-section structure 

q2 c OcPytds-P~$ S 
The problem is to determine the particular function y(z) 
and the corresponding value of the trailing-edge thickness 

*AS B l3rst approximation the torsional stiffness of B thin solid-section profile is taken to 
be proportional to the moment of inertia about the chord plane. 

Thus, by solving the problem with the general integral 
(2) left in terms of n and u a wide variety of auxiliary con- 

2 This statem& which appears evident from physical considerations, is equivalent to Mayer’s reciprocity theorem for isoperimctric problems in the calculus of variations. 
3 For thin-skin structures the thickness of skin is taken to be constant over the chord length. 

no sensible practical~prohlem. 
The two cases n=r=O and n=r=l are not included in this table BS they apparently reprosent 

~~~~- -- . --..---. . __._ -.- -.. _..--._ ,_,” ,” m ,,, “I I , .I, I, I ,--mm 
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ditions can be obtained simply by substituting appropriate 
integers for n and u. From an engineering viewpoint the 
general form of equation (2) enables approximate solutions 
to be obtained for wings of intermediate structural solidity 
by interpolating between the solution for essentially zero 
solidity (thin-skin structures) and the solution for complete 
solidity (solid-section structure). 

Summarizing, the problem formulated can be stated math- 
ematically as that of finding the airfoil-ordinate function 
y(r), and the trailing-edge thickness h=y(c), which mini- 
mizes the drag expression (1) for a given constant value of 
the structural integral (2). The boundary conditions im- 
posed are t.hat y(O)=0 and that P, is given. If t did not 
appear in equation (2), this mathematical problem would be 
a relatively simple isoperimetric problem in the calculus 
of variations. The occurrence of t, the maximum value of 
Y(Z), complicates matters because it is not known before- 
hand and, in fact, is one of the quantities to be determined 
from the given values of M,, Pb, and 1. Actually, all 
equations necessary for solving the problem formulated could 
be obtained directly from advanced treatises on the calculus 
of variations since the problem is a special case of the so- 
called “problem of Bolza with varia.ble end points”. (Such 
a procedure would lead quickly to equations (1 l), (12), and 
(IS).) However, the necessary equations can also be ob- 
tained by the simple methods employed here. 

METHOD OF SOLUTION 

Given structural criteria.-Since the pressure drag of t,he 
optimum airfoil, by definition, is the least possible of all 
airfoils having a given value of the structural integral (2), 
it follows that the pressure drag of any “varied” airfoil, 
having ordinates and slopes everywhere close to those of 
the optimum airfoil, must be in the neighborhood of a 
minimum. Hence, by considering only- infinitesima,l changes 
6?~ in the ordinate of the optimum profile, the corresponding 
increment in drag 6c, of such a varied profile can be equated 
to zero. Since 7~(+) is to provide the true minimum, the 
resulting equation must hold for an arbitrary ordinate change 
67~ varying with z, or for an arbitrary change in airfoil thick- 
ness 6t, or for an arbitrary change in trailing-edge thickness 
6h, or for any combination of va.riations thereof, providecl 
onl)F that the integral (2) is constant for all such variations. 

r - - Opt imum profile \ 
‘, v - - Varied pro file 

\ \ 

1 ----+ 4. 
FXYJRE Z.-Sketch of upper half of varied and opt imum profiles. 

Application of this basic principle, as will be seen, leads to 
a sufficient number of equations to determine the complete 
geometry of the optimum profile. 

A sketch of the type of optimum profile to be analyzed 
and the corresponding varied profile is shown in figure 2. 
Various quantities which appear often in the subsequent 
analysis are illustrated in this figure. It is to be noted that 
allowance is made for the possibility that the optimum 
profile may have a straight midsection of length I, the opti- 
mum value of which must be determined from the analysis. 
The varied profile is selected such that it does not change 
the ordinate or the surface slope at the leading edge. Intro- 
ducing the definition f = Py’ for the purpose of brevity, and 
equating the drag of the optimum profile to the drag of 
the infinitesimally varied profile, yields 

J” .fdx-Pb ;=; Cd=jy (.f+;$ dyg dx-Pb y, (3) 

The small change in slope 6y’ is equal to -& (6y), so equa- 

tion (3) can be written 

Int,ergrating by parts, 

or, finall>- 

h=o=-~c8Y A(%) dx+[(~>I-Po] g (5) 

The chordwise distribution of the variation 6y is not en- 
tirely arbitrary; it must be such that the auxiliary condition 
is satisfied, namely, the value of I for the optimum profile 
must be equal to that of the varied profile. 

Retaining only first order variations, this expression simplifies 
to 

or 

0= 
t 

‘nynmlSydr--gcI z t 
0 

c 8 
(8) 

This equation must be satisfied, of course if both terms on the 
right side are multiplied by an arbitrary constant X. More- 
over, equation (5) must be sat’isfied simultaneously. The 
arbitrary character of X enables the two equations (5) and (8) 
to be combined into a single equation which must hold for 
arbit’rary variations in 6y, sh, and 62. 
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‘=-lSY [+A ($$)-kXny’+l] dx+[ (%)l-pb] $!+ 
From this it is seen that a first integral of the basic differential 
equation (11) is 

ap y’* W+Xy”=constant (114 

Thus, since X is arbitrary, this single equation implies that 
both equations (5) and (8) are satisfied. 

If at this point the variation 6t is considered to be arbitrary, 
equation (9) as written would incorrectly suggest that 
Xacl must be zero. Hence it is to be expected that an 
additional term containing 6t exists in the integral expression 
of equation (9). Such a term arises from the contribution 
of the straight midsection to this integral, since over this 

region, 6y= S/2. Also, y=t/2 and z 
Hence 

=O over this region. 

o’-~W [+& ($)+hnynel] dz- 

~$-lsy[+&($$-~nYa-l] dx-f($)l-Pb] p-t- 

x [-n (;)n-lz+ocr (;“-‘I f (10) 

The variations 6y, sh, and 6t can now be conducted entirely 
independent of each other. Each of the bracketed terms in 
equation (10) must be zero, if the individual variations are 
not zero. Reemploying the definition f = Py’, the following 
equations are obtained: 

for 6yZO 
-& (p+y’ Z$ 

> 
+Xny”-‘=O 0 1) 

for 6h#O 

(12) 

for XGtfO 
1 

n G-U (t,2&o=0 (13) 

The differential equation (11)) of course, results from 
k equating to zero each of the two integrals in equation (10). 

This differential equa.tion, therefore, need be satisfied only in 
the two chordwise regions covered by the limits of these 
integrals, namely, in the region from z=O to x=s, and in the 
region from x=&l to x=c. (See fig. 2.) If the optimum 
airfoil has a finite length of straight midsection (e.g., AB in 
fig. 2), the differential equation (11) need not be satisfied in 
this intermediate region. 

which is satisfied by any straight surface y’=constant, 
regardless of whether linearized, second-order, or shock- 
expansion theory is used for P. The appropriate condition 
which must be satisfied at the trailing edge is, from equation 
(lo), 

> 1 -Ph she0 
I 

(15) 

Here the inequality is included since 6h for the case of a 
given thickness ratio is not always entirely arbitrary. Thus, 
when h=t/2 (wedge airfoil) 6h is restricted to always be neg- 
ative, and a minimum can exist if 

Fortunately, one integration of equation (11) can im- 
mediately be made, thereby lowering the order of the basic 
differential equation to be solved. Multiplying equation 
(11) by y’ gives 

O=y’ & P+ y’ Z$ 
> 

+Xny”-’ y’ 

=+A -& (y”) aP 
= 2y’y” v+ Y’“Y” ayr 2 

d =- 
dx Y’2 g+XYg 

this would make 6ca always positive instead of just 
making cd stationary. Consequently, under certain con- 
ditions two solutions are possible. First, the upper half 
of the optimum prose may consist of two straight segments 
with h<t (as illustrated in fig. 3), provided the equal sign 
in (15) applies. Second, the optimum profile may be a 
wedge profile with h=t, provided the inequality sign in (15) 
applies. If both types of solution are physically possible 

At the point , or points, where y’=O the ordinate is equal to 
t/2. Evaluating the constant of equation ((1 la) from this 
consideration yields 

aP 
Yr2 w=x w/w-Y”1 (1 lb) 

This equation, together with equation (12), equation (13), 
the given value of I, and the boundary condition y(O)=O, 
determines the complete geometry of the opt,imum profile. 

Given thickness ratio.-Attention is called to the fact that 
special precautions must be taken in applying the foregoing 
analysis to the auxiliary condition of a given thickness ratio. 
For this particular case 6t is zero, thereby causing the last 
term in equation (10) to vanish automatically without 
requiring equation (13) to be satisfied; equation (13), there- 
fore, does not necessarily apply when the thickness ratio 
is prescribed. Moreover, equation (lib) also does not 
necessarily apply since it was assumed in the process of 
obtaining this latter equation that the optimum airfoil had 
at least one point where y’=O. Such is not the case for 
the auxiliary condition of a given thickness ratio, and hence 
more detailed consideration is required. 

The appropriate differential equation to be used when 
t/c is given may be obtained from equation (lla)” by setting 
X=0. There results 

4 If equation (11) is used tbero results P+y’aP~~‘=cmstmt, which also is satisfied by my straight surfam The mnstant in this latter equation, however, does not have the same value 
Ior both straight segments comprising the profile; whereas, the constant in equation (14) is the same for both segments. (See appendix.) 
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FIGURE 3.-Sketch of upper half of optimum profile for a given thickness ratio. 

in a given case, the true solution, of course, wouid be the 
one with lower drag. 

If it is possible to obtain a. general solution to equations 
(lib), (12), and (13) (such is the case for linearized super- 
sonic flow), then the first of the two solutions mentioned 
above may be obtained without solving equations (14) and 
(15), but by passing the general solution to the limit as 

n+m.5 In order to verify that this limiting condition 
represents the auxiliary condition of a given thickness ratio, 
three conditions must be satisfied: First, as n+ 03 the 
auxiliary integral must correspond to the case of a given 
thickness ratio; second, the differential equation (lib) must 
reduce to equation (14) in the limit as n4 ~0 ; and third, 
the infinite value of n must be compatible with equation (13). 
Consider for the time being that the chord is of unit length. 
Since for any reasonable airfoil y<l, it follows that 

s 

e 
y” dx -+O as n+ ~0, and hence I-+0. A solution for I=0 

0 

would represent theoptimumairfoildeterminedwithout regard 
for an auxiliary integral. Such is the condition that would 
be used in determining the optimum airfoil for a given 
thickness ratio; hence the first of the above-mentioned 
conditions is satisfied. Inasmuch as y/(t/2)< 1, it is evident 
that [y/(t/2)ln-+0 as n.+ 00, thus reducing the differential 
equation (1 lb) to the form 

yt2g -+x f 
0 

n 
=constant 

which is the correct different,ial equation. As regards the 
third condition to be satisfied, it is seen that the values 
I=O, n= co, l=O, and a=finite are compatible with equation 
(13). Consequently, the limiting case n-+ m in the general 
solution to equations (1 lb), (12), and (13) represents one of 
the possible solutions for the case of a given thickness ratio. 
This fact will be used later in the report. 

QUALITATIVE RESULTS OBTAINABLE WITHOUT SPECIALIZING TO A GIVEN 
TYPE OF SUPERSONIC FLOW 

Although few quantitive results can be obtained from the 
basic systems of equations (ll), (12), and (13), without 
specifying a particular form for the surface pressure coefficient 
P, there is one general qualitative result that can be obtained 
from equation (13) without any further calculation. The 
optimum length of straight midsection 1 always is zero for the 
auxiliary condition of a given torsional stiffness or a given 
bending stiffness (a=O), but never is zero for the auxiliary 
condition of a given bending strength ((r= 1). Since (t/2)+” 
would be the value of I for a. rectangular-bar airfoil of the 

same thickness as the optinmm airfoil, it is evident that for 
an actual airfoil I/(t/2)‘+” will be of the order of one-half or 
two-thirds. As an example, this means that when bending 
strength is critical in a thin-skin structure (n=2), the opti- 
mum length of straight midsection will be of the order of 
one-third the chord length. 

CALCULATION OF OPTIMUM PROFILES USING LINEAR 
AIRFOIL THEORY 

SPECIALIZATION AND SOLUTION OF GENERAL EQUATIONS FOR LINERAR- 
IZED SUPERSONIC FLOW 

Given structural criteria.-According to the theory of 
linearized supersonic flow, the local surface pressure coefh- 
cient on an airfoil is given by 

For this approximation the basic differential equation (1 lb) 
becomes 

y’2 ;=x[(tjz)n- y”l] (17) 

or, after solving for daltly, 

J%=J&qi (18) 

This can be put into a more convenient form by introducing the 
dimensionless variables X, Y, L, and H defined in the lis t of sym- - 
bols, and eliminating Jxp by evaluating equation (18) at, x=s. 
Between the leading edge and the first downstream position 
of maximum thickness dy/dx is positive while the dimension- 
less variables X and Y both vary from 0 to 1. Along the 
length of straight midsection Y= 1, while X varies from 1 to 
1 +L. Along the downstream portion of curved surface 
dy/dx is negative and Y varies from 1 to H, while X varies 
from 1 + L to c/s. Consequently, equation (18) giving X as a 
function of Y becomes (with the convention that the sign of 
all radicals is positive) 

i 

l--$ 
s 

1 dP 
m on surface facing upstream 

x= n 
Y J&Y” 

1+c+.& 
s 

‘.dP on surface facing downstream n Y,/l-Yn 

(19) 

where the constant k, depends only on n and is given by the 
definite integral 

/2 for n= 1 
k,L= S IL- 0 %‘i - Y” 

r/2 for n=2 (‘JO) 
1.4023 . . . for n=3 

It may be noted here that integrals of the type occurring 
in equation (19) also occur at numerous places in the sub- 
sequent analysis. Such an integral, being a function of the 

f It should he noted that the value n=O, when substituted in the auxiliary integral, gives f=(ljZ)-=‘=wnstant; but this value cannot bc used to obtain the solution for the case of 8 given 
thickness ratio because n=O ia incompatible with equation (13). 

I 
_-.- - - ~. 
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parameter n and the lower limit Y, can be evaluated either 
graphically or analytically. An analytical evaluation for 
the first three integer values of n yields 

s 

1 dY 
2-y for n= 1 

== r/a-arc sin Y for n=2 
y&-Y? 

f 
(21) 

3-‘14F(k, p) for n=3 
where 

and 
2a 

L=k?(n-,) (nf2) 
k,+HJi=@+J; &) (26) 

These latter two equations are the final equations deter- 
mining the optimum dimensionless trailing-edge thickness H 
and the optimum dimensionless length of straight midsection 
L. The corresponding equations involving the given value 
of I can be developed from equations (13), (22), (25), and 
(26) as follows: 

The function F (k, q) is the incomplete elliptic integral of the 
first kind of modulus k and amplitude (o. (A table of this 
function is given in reference 7, page 122.) For convenience 
the various formulas developed later are left in terms of the 
above integral; specialization to the individual functions 
indicated in equation (21) for a given n could be made in 
any subsequent formula if desired. 

For linearized supersonic flow, equation (12) becomes 

=- -=- 

(27) 

This last equation determines H as a function of I/(t/2)“-“, 
or vice versa. It is to be noted from equations (24), (26), 
and (27) that the geometry of an optimum profile for given 
values of n and u is determined solely by H, which, in turn, 
depends only on the base pressure parameter B (equation 
(25)). 

pb=pl+ 
4 dy 

-( > 
- 

-8 dx 1 

or, on using the relation -k, dX=dY/Jl - Yn which applies 
to the surface facing downstream (equation (9)), there is 
obtained 

Pop zk,JFF ----= 
UC (s/4 (22) 

As defined earlier, H=h/t is the optimum trailing-edge 
thickness expressed as a fraction of the maximum thickness. 

Equation (13) can be written, in terms of X and Y, as 

’ YndX+l+~~~ YVX) (23a) 

or, after specializing to linearized flow, 

L+& 

(S 

I P”dY+ k&f 
n o JI-Y~L j-is) (23) 

Equations (22) and (23) can be put into more usable forms 
by noting from equation (19) that 

(24) 

After some algebraic manipulation involving integration by 
parts and introduction of the definition B= -P,@/(t/c) 
there results from combining equations (22), (‘23), and (24), 

B=2n(n+2-u)jl-Hn 
(n-u) (n+T I 

(25) 

Given thickness ratios-Since the use of linerarized theory 
provides a general solution in closed form of the basic equa- 
tions (lib), (12), and (13), the optimum profile for a given 
thickness ratio can be obtained, according to considerations 
presented earlier, simply by letting n-+ 03 in the general 
solution. Since Y is less than unity, it is evident that, for 
very large values of 72, 

dY=l-Y, and k,+l. 

Using equations (19) and (25), and noting that L=O for the 
present case, it follows that 

x= Y on surface facing upstream 
i 2 - Y on surface facing downstream (28) 

B=2 (2-m (29) 

;=1/(247)=2/B (30) 

Equation (28) shows that the optimum surface has a dis- 
continuity in slope at X=1, and that both segments make 
a common angle with the chord plane. Equation (29) pro- 
vides the required relation between the base pressure param- 
eter B and the optimum trailing-edge thickness. Equation 
(30) determines the position of maximum thickness. As H 
varies from 0 to 1 equation (29) covers only the range of B 
from 2 to 4. Within this range the above equations apply, 
and the optimum profile is of the type illustrated in figure 
3. For the range of B from 0 to 2 the second possible solu- 
tion discussed earlier, n”amely, a wedge profile, represents 
the optimum section. For values of B greater than 4 the 
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double-wedge airfoil with a sharp trailing edge is the optimum 
for a given thickness ratio. 

It is remarked that the above solution also can be ob- 
tained quite easily by solving equations (14) and (15) 
directly, instead of employing the limiting process. This 
direct method can be used to determine the optimum profile 
in those cases where the general solution in terms of n and (r 
cannot readily be found. Such is the case when shock- 
expansion and similar higher-order theories are employed. 

CALCULATION OF PRESSURE DRAG COEFFICIENT 

Given structural criteria.-Since the dimensionless thick- 
ness distribution of an optimum profile is completely deter- 
mined by the base pressure parameter, it is to be expected 
that the quantity &J(t/c)2 also will depend only on B. 
From equation (1) and the definition of B it is seen that 

Substituting P=ByI’/fi and changing to the dimensionless 
variables X, Y, and II yields c/y 

(d Y/dX)2 dX+ BEI 

The integral can be expressed in t,erms of .I/(t/2)‘+” by 
notingC,;hat (dY/dX)2=k,2(1 - Y”) and that I/(t/2)+“= 

(s/c) J Y”dX. There results for the pressure drag co- 

efficient of the optimum profile in linearized flow: 

&2-kn2 ’ - ‘;;;T” -“I +BH (31) 

Inasmuch as H, s/c, and I/(t/2)“-” depend only on the base 
pressure parameter, the quantity on the left side of equation 
(31) also depends only on B for given values of n and u. 

It is of interest to compare the pressure drag of t.he theo- 
retically optimum profile with that of more conventional 
sharp-trailing-edge profiles. According to linear theory the 
drag coefficient of a biconvex circular-arc airfoil (c~)~~ of 
thickness t,, is given by 

(32) 

A calculation of the value of the auxiliary integral for a 
circular-arc profile (I,,) is readily made by subst.ituting 
y=2(t,,/c)z [l-(x/c)] in equation (2). It is found that 

By requiring that I,,=I where I is the value of the auxiliary 
integral for the optimum profile of thickness t and position 
of maximum thickness at s/c, then equations (31) and (32) 
can be divided t,o yield 

&= 
kn2{ 1 - [I/(t/2)“-‘I } +BH(s/c)~ 

(33) 

This equation gives the ratio or the pressure drag of an 
optimum profile to that of a sharp-trailing-edge, circular-arc 
profile having an equal value for I. If the pressure drag 
coefficient of a double-wedge profile (c&~ is used as a basis 
of comparison instead of a circular-arc profile, there results 
in a similar manner 

cd -kn2{ 1 -[I/(t/2)+]} +BH(.s/c)~ -- 
b&ro A- 

4&W{ (n+ l)[~/WW-“I In--o 
(34) 

It may be noted that the right side of equations (33) and 
(34) depend only on the base pressure parameter if the values 
of n and u are given. 

Given thickness ratio.-As noted earlier, k,+l asn+ 0~. 
From equation (27) it follows that I/(t/2)+‘+0. By con- 
sidering equations (29), (30), and (31) there results 

=2B--$=4-H2 for 2<B<4 (35) 

Since [pcd/(t/c)2],,= 16/3 and [Pcd/(t/c)2]dro=4, it follows that 

&=$ @B-F)=& (4-H2) for 2_<B<4 (36) 

and 

for 2<B_<4 (37) 

These are the same two equations that would be obtained by 
passing equations (33) and (34) to the limit as n+ 03. When 
B_<2, the optimum airfoil for a given thickness ratio, as 
previously discussed, is a wedge, for which &/(t/c)2= 1+ B, 
~,/(c&,=3(1+B)/lS, and c~/(c~)~~=(~+B)/~. When B>4, 
the optimum is a double wedge, for which pcd/(t/c)2=4, 
~~/(4~~=3/4, and d(cdhur= 1. 

If it is desired to compare the optimum profile with a 
corresponding sharp-t’railing-edge profile on the basis of rela- 
tive I for a given cd, rather than on the basis of relative cd 
for a given I, then the foregoing calculabions can be applied 
by making only minor modifications. As noted earlier, the 
thickness distribution of the optimum profile having maxi- 
mum I for a given cd is the same as that of the optimum 
profile having a minimum cd for a given I. By using the 
subscript s to denote a sharp-trailing-edge airfoil (e. g., bi- 
convex, or double-wedge), and no subscript to denote the 
optimum profile, the relation 

can be deduced if it is remembered that I varies as the 
(n-u) power of the thickness, and that the pressure drag in 
linearized theory varies as the square of the thickness. The 
above equation shows that in employing an optimum section 
the relative structural improvement that can be obtained 
for a given drag is related in a simple way to the relative 
drag reduction that can be obtained for a given structural 
requirement. 
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RESULTS FOR LlNEARIZED FLOW AND DISCUSSION 

Significance and physical meaning of the base pressure 
parameter.-The determination of an optimum profile in 
linearized flow is greatly simplified by the fact that the 
dimensionless thickness distribution Y(x) depends only on 
the base pressure parameter B=----P&/(t./c), and not on 
the individual values of P,, M,, or t/c. 

Thus, although the Mach number, base pressure, and 
airfoil thickness ratio each indirectly affect the optimum 
airfoil profile, it is only necessary to know the value of B 
in order to determine the dimensionless thickness distri- 
bution (2y/t) of the optimum airfoil section. Knowledge of 
both I and B, of course, is sufficient to determine t/c as well 
as the dimensionless distribution of thickness. 

A simple physical interpretation of the base pressure 
parameter can be given if it is recalled that the basic means 
by which a thickened trailing edge reduces the over-all 
pressure drag is through a decrease in pressure foredrag at 
the expense of a smaller increase in base drag. Thus the 
optimum dimensionless distribution of thickness must 
depend essentially on the ratio of base drag to pressure 
foredrag. The base drag for a given II is proportional to 
(-Pb) (t/c) ; whereas the pressure foredrag for a given 1’ 
distribution is. accordinc to linearized theorv. nrouortional 
to (t/c)‘/JMm2’- 1. U 
Hence, 

base drag - p*w 
pressure foredrag-(tlc)2/dm= 

-PbJKX=B 
t/c 

or, in words, the base pressure parameter is proportional to 
the ratio of base drag to pressure foredrag. 

Condition under which optimum profile has a blunt trail- 
ing edges-From equation (25) it is easy to deduce the con- 
dition under which the optimum airfoil will have a blunt 
trailing edge. The critical condition is obtained by setting 
H= 0. This determines a particular value of B, say B. 

8 . . . for n=l, u=O 

6.283 . . . for n=2, u=O 

B=4kdn+2--a)= 
(n-u) (n+2) 

c 

5.609 . . . for n=3, u=O 

9.425 . . . for n=2, u=l (38) 

6.730 . . . for n=3, a=1 

4 . . . for n= m, u finite 

A lower value of B would correspond, for example, to a lower 
base drag, hence the physical significance of i? can be stated 
quite simply: the optimum airfoil has a blunt trailing edge 
for B<B; whereas it has a sharp trailing edge for BB??. 

Comparison with results of other investigations.-As. a 
partial check on the equations developed, several limiting 
cases can be obtained by specializing to particular values 
of n, 6, and H. First, if the base pressure coefficient is zero, 
corresponding either to zero base drag or else infinite Mach 
number, then B=O. From equation (25) it follows that 
H=l. In other words, the optimum profile for Pa=0 has 
its maximum thickness at the trailing edge. If the Mach 
number is finite and the base drag zero, then this result 

checks simple physical considerations. If the Mach number 
is infinite (for which B=O even if a vacuum exists at the 
base), then this result checks the qualitative consideration 
of Saenger referred to in the introduction. 

A second limiting case that easily can be checked may be 
obtained by considering only the auxiliary conditions of 
given stiffness of sharp-trailing-edge profiles. The appro- 
priate results are obtained by setting u=O and H=O. From 
equation (26) it follows that Z=O. From equations (19) and 
(21) it is seen that the optimum sharp-trailing-edge profile 
is a doubly symmetric profile, each side of which is comprised 
of the arc of a parabola for n=l, the arc of a trigonometric 
sine function for n=2, and the arc of an elliptic sine func- 
tion for n=3; these are the results obtained previously by 
Drougge. 

Summary curves of the principal results.-In figure 4 the 
optimum dimensionless trailing-edge thickness H is plotted 
as a function of the base pressure parameter B. Each curve 
in this figure is obtained by substituting the indicated values 
of n and u in equation (25). It is to be remembered that 
the curve consisting of three straight-line segments, cor- 
responding t,o n= 0) and a=finite, represents the auxiliary 
condition of a given thickness ratio. The other values of n 
and u represent the various structural criteria listed in the 
table presented earlier. 

FIGURE 4.-Optimum trailing-edge thickness for linearized supersonic flow. 

The location of the optimum position of maximum thick- 
ness s/c, as determined by equations (24) and (26), is plotted 
in figure 5 as a function of B. The values of n and u used 
here are the same as in figure 4. Comparing these two figures 
it can be seen that, as would be expected, the optimum posi- 
tion of maximum thickness moves steadily rearward as the 
optimum trailing-edge thickness is increased. 

Curves relating the value of I to the base pressure param- 
eter are shown in figure 6. These curves represent equa- 
tion (27). Since I is related to the optimum length of 
straight midsection through equation (13), the ordinate in 
this figure represents either of the two equal quantities, 
I/(t/2)‘? or nl/ac. Figure 6, therefore, &an. also be used to ,. .r ‘_. 



10 REPORT 1063-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

FIGURE 5.-Optimum position of maximum thickness for linearized supersonic flow. 

I I I I I 

FIGURE 6.-Curres relating I and 2 to the base pressure parameter for linearized supersonic 
flow. 

determine l/c in those cases where u is not zero. If u is 
zero, then I is zero, as noted before. 

In figure 7 the two quantities cd/(cJca and cJ(c&, are 
plotted as a function of B for various values of n and u. 
Depending on the value of B, it is apparent that the pressure 
drag of the optimum profile may be anywhere from a few 
percent to as much as 75 percent less than the pressure drag 
of an equivalent circular-arc sharp-trailing-edge airfoil. 
The structural criterion for which the greatest drag difference 
exists is that of a given bending strength of a thin-skin 
structure (n=2, u=l). The curves of figure 7 (b) clearly 
illustrate the high drag of a double-wedge profile when it is 
compared to the optimum profile on the basis of a given 
structural requirement. These curves also illustrate that 
the relative drag reduction of the optimum airfoil for the 
condition of a given thickness ratio is much less than the 
corresponding reductions for the various conditions of given 
structural requirements. 

Method of determining an optimum profile from experi- 
mental base pressure data.-The experiments of reference 
8 have shown that the base pressure of airfoils in supersonic 

.8 _' A' 

(a) Drag of optimum relative to biconvex circular-arc airfoils. 
(b) Drag of optimum relative to double-wedge airfoils. 

FIGURE i.-Drag of optimum airfoils es compared to the drag of two different sharp-trailing- 
edge airfoils in linearized supersonic flow. Comparison made on the basis of equal values 
for the auxiliary integral. 

flow depends primarily on the trailing-edge thickness, 
Reynolds number, and type of boundary-layer flow. The 
base pressure generally does not depend significantly on the 
shape of the airfoil profile upstream of the trailing edge. 
Figure 8 presents summary correlation curves (taken from 
reference 8) showing the dependence of base pressure on the 
parameters c/[h(Re)‘l”] and c/[h(Re)‘/*], which are approxi- 
mately proportional to the ratio of boundary-layer thickness 
t,o trailing-edge thickness for turbulent and laminar flow, 
respectively. Since the optimum profile depends on the base 
pressure, which, in turn, depends on the trailing-edge thick- 
ness of the optimun profile, the value of B is not known 
initially. For this reason the process of determining an 
optimum profile from the experimental data of figure 8 
involves several steps: 

(1) For an arbitrarily- selected value of t/c, B is computed 
as a function of H using the proper experimental value of 
base pressure for each H. 
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(a) 

0 I 2 3 4 5 
c/[wwq 

(a) Turbulent. 

.2 / 

PI 

0 .u4 .08 ./2 ./6 .20 
c/ [WW 411 

(b) Laminar. 

FIGURE &-Average values of base pressure from experiments of rclerCnCC 8. 

(2) A plot of H versus B is superposed on figure 4. The 
point of intersection with the existing curve for the particular 
combination of n and c in question determines optimum 
values of H and B for the particular t/c selected. 

(3) Knowing t/c, H, and B from (1) and (2), I is calculated 
from equation (27). 

(4) The above process is repeated for several values of t/c. 
Interpolation for the desired value of I then yields the values 
of t/c, H, and B of the optimum profile. The optimum 
value of B yields the optimum values of s/c and Z/c. Equa- 
tions (19) and (21) yield the basic shape of the curved 
portions of the desired airfoil. 

The results of applying steps (1) and (2) for a thickness 
ratio of 0.06, a Mach number of 3, and a turbulent boundary 
layer at Re=107, are shown in figure 9. It is seen that the 
optimum trailing-edge thickness varies between 0.12t and 
0.67t for the different combinations of n and (r. The cor- 
responding pressure drag reduction compared to a biconvex 
airfoil having the same value for the auxiliary integral varies 
between6 and 29 percent, whereas compared to a double-wedge 

airfoil the corresponding pressure drag reduction varies 
between 1 and 63 percent. 

The effect of Mach number on the optimum profile for 
t/c=0.06, n=l, u=O, and turbulent flow at Re=lO’, is 
shown in figure 10. For M, =,?I an estimated value of 
~~12)~ =0~.15 was. employed since experimental base pres- 
sure data are not yet available at this Mach number. For 
M,= 03 and M-=1, it is not necessary to know the base 
pressure to determine the optimum profile with linear theory. 
A large effect of Mach number on the optimum profile, 
particularly at Mach numbers above about 3, is evident 
from figure 10. The effect of airfoil-thickness ratio on the 
geometry of the optimum profile also is large, as illustrated 
in figure 11. (For th e case t/c=0.02 in this latter figure, it 
was necessary to extrapolate the experimental base-pressure 
curves of fig. 8 (a) in order to estimate the base pressure.) 
The trends illustrated in figures 10 and 11 can be explained 
from elementary physical consideration if it is recalled that, 
B corresponds to the ratio of base drag to pressure foredrag. 
Thus, H approaches unity as M, approaches unity because 
the pressure foredrag in linear theory approaches infinity 
while the base drag remains finite. Moreover, H also 
approaches unity as Mm approaches infinity because the 
base drag, which is approximately proportional to l/M’, 
becomes small compared to the pressure foredrag, which in 
linear theory becomes proportional to l/M. By the same 
token, H approaches unity for very thick airfoils because the 
base drag, proprotional to t/c, again becomes small compared 

3% 
t;gc 

.94 

.94 

.7/ 

.9/ 

.75 

Cd 
?Q& 
57 

77 

84 

37 

.66 

.99 

FIGURE S.-Examples illustrating the effect of auxiliary.@mdition on the optiium profile; 
linearized flow, vertical scale expanded, M, =3, t/c=0@3, turbulent flow at Re=lO’. 
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FIGURE IO.-Examples illustrating the effect of Mach number on the optimum profile 
linearized flow, vertical scale expanded, n=l, u=O, t/c=0.06, turbulent flow at Re=lO’. 

.4/ 89 I=; [c[y”/(t/2)u] dx 

.98 

68 

FIGURE U-Examples illustrating the effect of airloil thickness ratio on the optimum profile; 
linearized flow, vertical scale expanded, n=l, r=O, M, =3, turbulent flow at Re=lO’. 

to the pressure foredrag, which in linear theory is proportional 
to (t/c)“. 

Reynolds number has an important effect on the optimum 
airfoil profile if the boundary layer is laminar. (See fig. 12.) 
This is because the base pressure depends markedly on 
Reynolds number for laminar flow. For turbulent flow the 
corresponding dependence is seen to be considerably less, 
and the optimum trailing-edge thickness is seen to be much 
less than for laminar flow. 

Re=105, Lominor .75 

@--p------- 

Re = l0 !, Turbulen t 
.&--------------- ./6 

Re =/O: Turbulent 

r - 
( 

, 

.8/ 

.86 

.88 

FIGURE 12.-Esamplcs illustrating the effect of Reynolds number and type of boundary-layer 
flow on the optimum lxofile; linearized flow, vertical scale expanded, n=l, a=O, M, =2, 
tJc=o.o4. 

CONCLUDING REMARKS 

The general method presented for computing the profile 
shape having minimum pressure drag at zero lift has been 
developed for the auxiliary condition that 

is constant. For a given airfoil theory, the determination 
of an optimum profile under this condit,ion involves the 
simultaneous solution of equations (ll), (12), and (13), 
which are general in that the surface pressure coefficient 
P(y’) and the parameters 7~ and u are arbitrary. Such 
generality is useful since it allows either linear theory? 
second-order theory, or shock-expansion theory to be used 
in determining the optimum profile for a number of practical 
auxiliary conditions such as prescribed bending strength or 
given torsional stiffness. As an illustration of the method, a 
solution has been developed$n detail using linearized flow, 
that is, using the expression P=2~‘/,iM,~-l. In this 



-- -___ 

,i+’ 
./ :-._, .^ ., : q-j 

-r- 
:. 

AIRFOIL PROFILIW FORMINIMUM PRESSURE DRAG AT SUPERSONIC VELOCITIES 13 

simple case a complete solution in closed form is obtained 
for the thickness distribution of the optimum profile. 

The principal result of the analysis for linear supersonic 
flow is that the dimensionless thickness distribution of the 
optimum profile depends only on the single parameter 
B= -Pa,hIJ- l/@/c>. This parameter has been termed 

” ‘the base pressure parameter, and has a simple physical 
significance in that it is proportional to the ratio of base 
drag to pressure foredrag. The dependence of an optimum 
profile in linear flow on one parameter only enables summary 
curves to be plotted showing all principal results as a func- 
tion of B (figs. 4, 5, 6, and 7). The optimum dimensionless 
trailing-edge thickness increases if either the base pressure 
is increased, the airfoil-thickness ratio is increased, or the 
Mach number is increased to very high values. 

At low supersonic Mach numbers the theoretical results 
obtained are questionable since the assumptions of linear- 
ized airfoil theory break down as the Mach number ap- 
proaches unity. The results can be applied safely only 
to cases where linear theory satisfactorily predicts the 
pressure foredrag. Although at high supersonic Mach num- 
bers the results obtained under the assumption of linearized 
flow also would not be expected a priori to be of quantita- 
tive value, they predict, nevertheless, the correct result 
that the optimum trailing-edge thickness for Smite Mach 
number is equal to the maximum airfoil thickness. In 
view of this exact agreement in the extreme case, it is con- 
lectured that the linear theory fortuitously may provide 
a reasonable estimate of the optimum trailing-edge thickness 
for any supersonic Mach number not close to unity. As 
regards the optimum profile shape forward of the base, 
however, such fortuitous conditions cannot be expected, 

since the linearized approximation at high Mach numbers 
overestimates the suction forces and underestimates the 
positive pressure forces. This causes the calculated opti- 
mum profile to have too large a leading-edge angle, a posi- 
tion of maximum thickness too far forward, and too small 
an inclination of the surface behind the position of maxi- 
mum thi&ness. (In reference 9 some calculations using 
second-order theory are presented which illustrate this 
effect on the optimum sharp-trailing-edge profile for the 
auxiliary condition of a given thickness ratio.) 

Because the optimum profile, by definition, has the 
least pressure drag possible under given conditions, small 
changes in profile shape would result in second-order changes 
in drag. This allows some flexibility in modifying the 
theoretically optimum profile to more closely suit individual 
design requirements, and means that it is not important 
to rigorously adhere to the exact parabolic, trigonometric- 
sine, or elliptic-sine contour (provided, of course, that the 
end points of the modified contour are located approximately 
in the optimum positions). It is important to adhere 
reasonably close to the calculated optimum trailing-edge 
thickness, since this quantity can greatly affect the drag. 
In particular, a trailing-edge thickness considerably greater 
than the optimum should not be used. Excessive trailing- 
edge thickness at low and moderate supersonic Mach 
numbers can result in an excessive increase in drag. 

Aicrns AERONAUTICALLABORATORY, 
NATIONALADVISORYCOMMITTEE FOR AERONAUTICS, 

MOFFETT FIELD, CALIF., October 3, 1960. 
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APPENDIX 

NOTE REGARDING DISCONTINUANCE CHANGE IN SLOPE 
OP AN OPTIMUM PROFILE 

In the general analysis of optimum profiles for a given 

thickness ratio it was found that the function Y’~ bP necessar- 
by’ 

ily was constant along each straight segment of the profile 
(equation (14)). No information was obtained, however, 
about the relative value of this constant for the two seg- 
ments. The required information can readily be obtained 
by considering the change in drag due to a change only in 
position of maximum thickness, that is, a change in slope of 
both straight surfaces illustrated in figure 3 with no change in 
t or h. Using subscripts u and d to denote surfaces facing 
upstream and downstream, respectively, it follows that 

=t (j$). 6y’, +G-h) (g)d 6y’d 

Since y’u=t/s and y’d=(t-h)/(~-s), the minimizing of cd 
requires that 

Thus yf2 &; must be continuous at the corner-a result 

which was used without proof in the general analysis. It 
may be noted that an alternate proof of this result can be 
obtained in an extremely easy way from the following 
known result of the calculus of variations: The Weierstrass 
E-function is continuous at the point of discontinuity on a 

boundary. The E-function in the present case is Y/‘~ &T. 

For auxiliary conditions other than a given thickness ratio 
it was tacitly assumed in the analysis that the optimum 
surface everywhere had a continuous slope. This assumption 

also requires some justXcation. It is shown in the calculus 
of variations that at all points of free variation it is necessary 

for g to be continuous. For the present problem this means 

that P+y’ bP must be continuous at all such points. 
by’ 

Ac- 

cording to linear theory, Pfy’ z=4 y’, hence, within the 
dY’ P 

scope of linear theory, the surface slope y’ is continuous at all 
points of free variation. For shock-expansion theory 
bP _ is positive, and a corner would cause a discontinuous de- 
by’ 
crease in P, y’, and Pf y’ z* hence, also within the scope of 

by” 
shock-expansion theory the surface slope of the optimum pro- 
file is continuous at all points of free variation. This justifies 
the assumption of continuous slope employed in the general 
analysis for auxiliary conditions other than a given thickness 
ratio. 
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